
The Magazine for Agile Developers and Agile Testers

January 2010

issue 1www.agilerecord.com	 free digital version	 made in Germany

62 www.agilerecord.com

Scrum and RUP - A Comparison
Doesn't Go on All Fours
by Remi-Armand Collaris and Eef Dekker

Introduction

Many developers who have embraced Scrum or any other ‘agile
way of working’ perceive the Rational Unified Process (RUP) as
the opposite of what they see as useful and fruitful. So, we have
heard many professionals in the field saying things like: ‘If you do
Scrum, you have no room nor need for RUP’, ‘You should always
apply Scrum exactly, otherwise it doesn’t work. So it is dangerous
to try to apply more.’ On the other hand, developers who are used
to RUP or another process-based development method perceive
Agile software development as being unstructured, undisciplined
and lacking any form of documentation.

In our experience, Scrum and RUP do not collide but rather com-
plement each other. In the following, we show

•	 what (mis)interpretations of both Scrum and RUP are behind
the collision view, and

•	 what evidence there is to sustain the complementary view.

Popular but flawed views of RUP

The Rational Unified Process is a massive development process,
which you need to swallow completely. Indeed many organiza-
tions tried to apply full-blown RUP without much tailoring. Not
surprisingly, they came to a complete standstill pretty quickly.
Nowadays, as intended all along, the first key principle of RUP
is to ‘adapt the process’. That is, to apply only those parts which
you need in your organization, and to adapt those parts so they
fit in your organization.1

Some views that can be traced to the same misunderstanding
include:

•	 RUP lets you produce massive heaps of paper (or electronic
counterparts), for as many as 128 work products are pre-
scribed. It was never intended for any organization, no matter
how large, to apply each and every work product. Choosing the

right work products to support development and production is
an important part of adapting the (development) process.

•	 If you apply RUP, you must have a large team, for RUP pre-
scribes 33 different roles. Roles are meant to be like ‘caps’ a
person wears. Various roles can be played by the same per-
son, just as one role can be played by more than one person.
The ultimate consequence of this is that you can have a team
of one person, playing all roles. Although this is seldom the
case, it is not precluded by anything in RUP. Furthermore there
is nothing that keeps you from describing fewer roles in your
organisation’s RUP implementation.

•	 The RUP is a complex process, you are bound to get lost in it.
Unfortunately, this one seems to hold for IBM’s distribution
of RUP for large projects. However, you are supposed to tailor
RUP for your organization or project. The result can be clari-
fied in a Development Case (a work product describing your
development process). Such a Development Case can include
a Responsibility Matrix and Workflows / Work product flows2 to
illustrate the process. There are also tools like Rational Meth-
od Composer or its open-source counterpart Eclipse Process
Framework (EPF) that can help you tailor RUP to your needs.

•	 RUP is just a disguised waterfall process. Admittedly, the
RUP disciplines are modelled after waterfall phases and RUP
doesn’t forbid you to divide your project in iterations of 3
months each. However, the opening picture of IBM’s distribu-
tion of RUP shows multiple iterations per phase and shows all
disciplines working together throughout the lifecycle. Further-
more, the fourth key principle of RUP to ‘deliver value itera-
tively’, makes it impossible to see a waterfall project as a valid
RUP implementation.

Popular but flawed views of Scrum

Scrum is a complete software development methodology that
should be used “as is”# without any adaptations or additions.

©
 cosm

a - Fotolia.com

64 www.agilerecord.com

Scrum is an Agile process framework for managing Agile teams.
With only 3 roles, 3 important meetings and just a handful of
work products it sets up an easy-to-learn process for managing
incremental software delivery, guided by business needs. It helps
the team to deliver value to the customer early and gives com-
plete openness to all stakeholders concerning tasks that are be-
ing done, progress of the team and impediments that keep the
team from performing at its best. It does, however, focus only
on the management aspects of Agile software development and
does not comprise development practices.

Some views that can be traced to the same misunderstanding
include:

Scrum is so wonderful and so widely applicable that you don’t
need any of those thick-headed processes anymore. We agree
fully with the first part. Scrum is wonderful and most lessons
it teaches can be applied generally. However – as we hope to
show – you can and must complement Scrum with something
else.

Once you think Scrum in itself does it all, you forget that most of
the time Scrum comes with a whole bunch of implicit or explicit
assumptions. For example, Scrum assumes there is a vision for
the project and defines a product backlog, but Scrum in itself
does not say how these work products are filled initially. This is
no rocket science, but our point is that Scrum leaves many open
ends to be filled in – be it by common sense or by some other
methodology as long as you stay Agile (focused on the situation
at hand).

Another example: the product owner represents all stakehold-
ers. Which stakeholders and what their stake may be, is outside
Scrum’s scope. Of course, it is good to have a product owner as
the single point of customer responsibility. Nevertheless, if it
somehow belongs to the project scope to get your stakeholders
aligned, some guidance on how to do this might be welcome.

Scrum advocates cross-functional teams; the team as a whole
is responsible. Therefore we don’t need role descriptions for
team roles. We have seen that a team, in which individuals re-
ally take responsibility for the team result, performs a lot better
than one in which individuals take responsibility only for stuff
within the scope of their own role. The point is that individuals
should not stick to only one role. They should be able and willing
to switch roles if needed. For example, the individual who has
the role of Analyst can switch to the role of Tester. This is just
another way of saying that John (normally being the Analyst)
takes up some testing tasks. It is still valid and useful to have
good role descriptions. People can see what is expected if they
take up that role. A role is a cap, and you should be able to
judge if that cap fits you.

Furthermore, roles and associated skills and competencies are
indispensable when assembling a development team. Sharing
responsibilities within the team doesn’t make it less important
to put together all skills and competencies that will be needed
to get the job done.

Compatibility

Here follow a few quotations or observations on points in which
Scrum and RUP resemble each other:

Scrum
(from the Scrum Guide3)

RUP
(from 7.5 large projects)

“Scrum employs an iterative,
incremental approach to opti-
mize predictability and control
risk.”

“Deliver Value Iteratively” and
“Attack major … risks early”
(from Key Principle 4)

“The ScrumMaster helps the
Team understand and use
self-management and cross-
functionality.”

“Collaborate Across Teams”
and “Create self-managed
teams” (from Key Principle 2)

“Each Scrum Team member
applies his or her expertise
… the resultant synergy … im-
proves code quality and raises
productivity.”

“Focus continuously on qual-
ity” and “Ensure team owner-
ship of quality for the product.”
(from Key Principle 6)

“By the end of the Sprint ret-
rospective, the Scrum team
should have identified action-
able improvement measures
that they implement in the next
Sprint.”

“Adapt the process” and “Im-
prove the process continuous-
ly” (from Key Principle 1);
“The Iteration Assessment
captures…lessons learned and
process changes to be imple-
mented” (from Process Essen-
tials 7)

Scrum and the complementary view

Although the core of Scrum is very simple, it is not completely
self-explanatory and has a limited scope. The first point is illus-
trated by the many books and articles dedicated to the applica-
tion of Scrum. Scrum gives you the simple basics that all can
easily understand. Yet every situation is different so you need to
adapt the process.

The second point becomes clear by looking at its scope. Scrum
is about managing the development process:

•	 The Team is self-managing and self-organizing
•	 The Product Owner manages the Product Backlog
•	 The Scrum Master manages the Scrum process.

Any rules not stated in Scrum are supposed to be figured out by
the Team and all others involved in the project. They may consult
best practices, such as those described in other (Agile) method-
ologies.

Scrum is often used in conjunction with eXtreme Programming
(XP), an Agile methodology providing day-to-day practices for
developers. RUP can complement them with guidance on orga-
nizing iterations, working towards a release to production. XP is
mainly concerned with requirements, architecture, development
and testing, whereas RUP also provides practices for other soft-
ware development disciplines. Furthermore RUP supports higher
levels of ceremony (if needed) than Scrum and XP do.

Scrum and RUP both provide guidance on team management,

65www.agilerecord.com

1	 For guidance on this point, see our article Tailoring RUP made easy: Intro-
ducing the Responsibility Matrix and the Artifact Flow , published in the
September 2006 issue of The Rational Edge, http://www-128.ibm.com/
developerworks/rational/library/sep06/collaris_dekker_warmer/index.
html

2	 See our implementation of RUP: www.rupopmaat.nl (Dutch), and the publi-
cation we’re working on: www.ScrumUP.eu. See especially the workflows and
how they bring everything together.

3	 The Scrum Guide can be downloaded at http://www.scrumalliance.org/
resources/598.

but are not focused on project management. For this Scrum
could be pulled to a higher level (Scrum of Scrums) or the current
management practices – like those described in Prince 2 – can
be used.

We have done several projects with a combination of Scrum and
RUP, and are writing a book on it which we hope to publish in the
near future. You can take a preview look at: www.ScrumUP.eu/
preview.

Figure 1: The Focus of Scrum, XP, RUP and Prince 2

In figure 1 we have visualized the scope of Scrum together with
that of RUP, XP and Prince 2. On the x-axis we see time ranges:
Does a method focus on day-to-day tasks, or is it focused around
iterations, or perhaps releases or the complete project? We see
that Scrum is focused on day-to-day tasks, and RUP not at all.
We find iterations to be an overlapping area of concern, whereas
Scrum does not say much about releases or a project as a whole.
On the y-axis we see several ‘disciplines’. Scrum is mostly con-
cerned with team management and a little bit with requirements.
RUP has a lot to say about other disciplines as well, although of
course there are areas which RUP does not cover.

One could well place XP as a set of day-to-day practices in the
field of architecture, implementation, requirements and test. In
this way, we can show that Scrum and XP complement each oth-
er in the day-to-day area, and that even Scrum and XP together
are nicely complemented by RUP. ■

Remi-Armand Collaris
is a consultant at Ordina,
based in The Netherlands.
He has worked for a num-
ber of financial, insurance
and semi-government in-
stitutions. In recent years,
his focus shifted from
project management to
coaching organisations in
adopting Agile using RUP,

Scrum. An important part of his work at Ordina is con-
tributing to the company's Agile RUP development case
and giving presentations and workshops on RUP, Agile
and project management. With co-author Eef Dekker,
he wrote the Dutch book RUP op Maat: Een praktische
handleiding voor IT-projecten, translated as RUP Tai-
lored: A Practical Guide to IT Projects, second revised
edition published in 2008 (see www.rupopmaat.nl).
They are now working on a new book: ScrumUP, Agile
Software Development with Scrum and RUP (see www.
scrumup.eu).

Eef Dekker
 is a consultant at Ordina,

based in The Netherlands.
He mainly coaches orga-
nizations in implementing
RUP in an Agile way. Fur-
thermore, he gives presen-
tations and workshops on
RUP, Use Case Modeling
and software estimation
with Use Case Points. With

co-author Remi-Armand Collaris, he wrote the Dutch
book RUP op Maat, Een praktische handleiding voor IT-
projecten, translated as RUP Tailored, A Practical Guide
to IT Projects, second revised edition published in 2008
(see www.rupopmaat.nl). They are now working on a
new book: ScrumUP, Agile Software Development with
Scrum and RUP (see www.scrumup.eu).

> About the author

	agilerecord_01 voorblad.pdf
	agilerecord_01_dekker_collaris.pdf

